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ABSTRACT
We introduce a new method for estimating recombination rates from population genetic data. The

method uses a computationally intensive statistical procedure (importance sampling) to calculate the
likelihood under a coalescent-based model. Detailed comparisons of the new algorithm with two existing
methods (the importance sampling method of Griffiths and Marjoram and the MCMC method of Kuhner
and colleagues) show it to be substantially more efficient. (The improvement over the existing importance
sampling scheme is typically by four orders of magnitude.) The existing approaches not infrequently led
to misleading results on the problems we investigated. We also performed a simulation study to look at
the properties of the maximum-likelihood estimator of the recombination rate and its robustness to
misspecification of the demographic model.

ESTIMATION of recombination fractions using ped- ber of pairwise differences (Hudson 1987; Wakeley
igree data is impracticable for very fine scales 1997) or the minimum number of recombinations re-

(�0.1 cM), because thousands of meioses are needed quired (Hudson and Kaplan 1985; Wall 2000) have
per recombination event. As there are a large number been proposed.
of meioses in the history of a sample of population data, However, inference based on a summary statistic is
such data could be used for estimating recombination inefficient, as it involves ignoring some of the informa-
rates over fine scales. However, estimation of the recom- tion contained in the data. Due to strong correlations
bination rate from population data presents a difficult between the sampled chromosomes, the amount of ex-
challenge. tra information that can be obtained by increasing the

In this article, we take a full-likelihood-based approach sample size is small. As a result, it is imperative to try
to this problem. We consider the case of a constant- to use all the information contained in the sample. This
sized panmictic population evolving under neutrality. involves calculating likelihood surfaces on the basis of
Our aim is to approximate the joint-likelihood surface the whole data for any unknown parameters of interest.
for the recombination and mutation rates, on the basis To calculate the likelihood surface for the data, a
of all the information contained in the data. This likeli- population genetics model must be assumed. We work
hood surface involves a sum over all possible genealogies within the framework of the coalescent (Kingman 1982a)
consistent with the data. Evaluating this sum exactly and its extensions to include recombination (Hudson
is impossible, so we develop an importance sampling 1983; Griffiths and Marjoram 1996b). These pro-
method that approximates it. By approximating the op- cesses model directly the genealogical history of a sam-
timal proposal density for the importance sampling, we ple of chromosomes from the population. They provide
obtain an algorithm that appears to be substantially good approximations to the genealogies that arise for
more efficient than existing importance sampling and a wide range of the classical models for population de-
Markov chain Monte Carlo (MCMC) approaches to this mography that are usually specified forward in time
problem. and in particular can be thought of as describing the

Historically, inference about the recombination and genealogy of a large population, evolving according to
mutation rates has been achieved using summary statis- the Wright-Fisher model (Kingman 1982b). The exten-
tics. For example, estimation of the mutation rate for sion of the coalescent to incorporate recombination is
a set of sequence data, in the absence of recombination, called the ancestral recombination graph (ARG).
could be based on the number of alleles, the number of

No explicit formulas are known for the likelihoods of
segregating sites, or the number of pairwise differences

interest. Recent developments in computationally inten-(see, e.g., Donnelly and Tavaré 1995). For estimating
sive statistical methods have provided techniques forthe recombination rate, estimators based on the num-
approximating likelihoods in complex problems such
as this. For models with no recombination both im-
portance sampling (Griffiths and Tavaré 1994a,b,c)
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More recently, Stephens and Donnelly (2000) sug- hood surface over a grid of possible recombination and
mutation rates. We then compare our method withgested an improved importance sampling algorithm,

which can be orders of magnitude more efficient than those of Kuhner et al. (2000) and Griffiths and Mar-
joram (1996a) and demonstrate that the new algorithmprevious importance sampling schemes. They character-

ize the optimal proposal density for importance sam- gives more accurate estimates, typically substantially so,
of the likelihood surface for fixed computing time. Fi-pling. While this density is intractable, they show how

it can be approximated by approximating one-dimen- nally, properties of the maximum-likelihood estimator
(MLE), and its robustness to the demographic assump-sional sampling densities. This approximation can then

be used as the proposal density in the importance sam- tions, are studied. This is based on a simulation study.
The Model and notation, Importance sampling, and Imple-pling scheme.

Less work has been done for estimating likelihood mentation sections describe the population genetics and
statistical background and provide the details of thesurfaces in the presence of recombination. However,

Griffiths and Marjoram (1996a) extended the impor- new method. Some level of technicality in the treatment
seems unavoidable. We provide an informal descriptiontance sampling approach of Griffiths and Tavaré

(1994a,b,c) and Kuhner et al. (2000) developed an of the problem and of our approach in the next section.
Readers interested primarily in the application of theMCMC scheme for this problem. Nielsen (2000) con-

sidered the related problem of estimating recombina- method should be able to skip the three sections listed
above and move directly from the next section to thetion rates from single nucleotide polymorphism data

and developed an MCMC algorithm for estimating the implementation of the new method and the compari-
sons with other approaches, described in Comparisonslikelihood curve in this case.

A comparison of the maximum-likelihood estimates of with existing methods.
the recombination rate based on the likelihood surfaces
produced by these methods, and estimates of the recom-

Informal description of the new method
bination rate based on summary statistics, can be found
in Wall (2000). While basing estimation of the recombi- Suppose we have a sample of chromosomes taken

from a population, from which we wish to estimate thenation rate on the likelihood surface of the whole data,
as opposed to just some summary statistic of the data, recombination rate or perhaps jointly estimate the re-

combination and mutation rates. In fact, if r and �is optimal (in the sense that it uses all the information
in the data), it is unclear as to whether the existing denote, respectively, the probability of recombination

and the probability of mutation in the region of interestmethods are able to approximate the likelihood surface
accurately enough to give a good approximation of the per chromosome per generation, it is possible from such

data only to estimate � � 4Nr and � � 4N�, where Nmaximum-likelihood estimate.
Here we use a similar idea to that of Stephens and is the effective population size. We focus on approximat-

ing the joint likelihood for � and �, that is, the probabil-Donnelly (2000) to obtain a more efficient importance
sampling algorithm for this class of problems. The reader ity, as a function of � and �, of obtaining the data actually

observed.is referred to that article for background on the differ-
ent (MCMC and importance sampling) approaches to Now imagine that in addition to observing the sam-

pled chromosomes we were also told their completeinference that are possible for this kind of problem.
Here, as in Stephens and Donnelly (2000), the opti- ancestral history: the details of their genealogical tree

at each locus and of the recombination and mutationmal proposal density can be characterized and related
to one-dimensional sampling densities. These densities events in that history. With this extra information, calcu-

lating the likelihood for � and � is straightforward, and,are approximated by considering a simpler model, which
still contains many of the features of the ARG, but for for example, estimation of � and � would typically just

involve counting the number of recombination and mu-which the sampling distribution is tractable. The ap-
proximations to the sampling densities can then be used tation events and dividing these by the total time over

which they could have occurred. Sadly, we do not ob-to obtain an approximation to the optimal proposal
density, which we then use as our proposal density. In serve this additional information, and the likelihood we

actually want involves an average (or integral) over thechoosing our proposal density we also take account of
the ease of sampling from it. (uncountable) number of possible histories consistent

with the data. The dimension of the space of unobserv-The contents of the article are as follows. We give an
informal introduction to the problem and our approach able histories is so large that standard (naive) simulation

or Monte Carlo methods for approximating the likeli-and then we introduce our model and notation. We
next describe the idea of using importance sampling hood are impracticable. (For the examples we consider,

of the order of 1050 simulations are required before wefor approximating the likelihood surface for a given
value of the recombination and mutation rates. In par- would simulate even one history that is consistent with

the data.) Several more sophisticated, but nonethelessticular, we derive the optimal proposal density and our
approximation to it. We consider estimating the likeli- computationally intensive, methods for approximating
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the likelihood are available. Two broad classes of meth- We allow two distinct models for the segment. The
ods are MCMC and importance sampling. Informally, first is a finite-sites model. We allow a finite number of
each involves trickery to sample preferentially from ge- loci, each at a discrete position. For example, if our
nealogical histories that are relatively likely, given the data come from three equally spaced microsatellite loci,
observed data. Kuhner et al. (2000), and on a related but then we use a three-locus model, with loci at positions
different problem, Nielsen (2000), adopt an MCMC 0, 0.5, and 1. At each locus we allow a general K-allele
approach. Griffiths and Marjoram (1996a) and this mutation model. We assume the mutation transition
article use importance sampling. matrix, P, is the same for each locus and is known. (The

Importance sampling involves repeatedly sampling elements of the matrix P, P��, are, for each � and �,
independent ancestral histories from a proposal distri- the probability that when a mutation occurs to an allele
bution. In our implementation, all sampled histories of type � it mutates to an allele of type �.) Furthermore,
are consistent with the data, and, for each one, an impor- we assume that the mutation rate is the same for each
tance weight is calculated. Loosely, the importance weight locus, but this is easily generalized.
measures the probability of the sampled history under Second, we consider an infinite-sites model. This model
the coalescent model, relative to its probability under allows for an infinite number of loci at a continuum of
the proposal distribution. To estimate the value of the positions. If a mutation occurs within our segment, then
likelihood at a particular (�, �) value, one simply aver- we assume it is equally likely to have occurred at any
ages the importance weights associated with the sam- position in [0, 1] (formally we simulate a position for
pled histories. (Various methods are available to extend the mutation from a continuous uniform distribution
this to an estimate of the entire likelihood surface; see on [0, 1]). This is a suitable model for sequence data
Implementation.) where the probability of repeat mutations is negligible.

The key to a good importance sampling scheme is in The data are summarized by the positions of the sites
making a good choice of the proposal distribution. It where mutations have occurred (the segregating sites)
turns out that for this problem we can characterize the and which of the two types (arbitrarily labeled) each
optimal choice of proposal distribution, but that like chromosome is at each segregating site.
the likelihood itself, this optimal proposal distribution Recombination within our segment causes different
is inaccessible. Nonetheless, and this is the key to our loci to have different genealogies. These genealogies
approach, the characterization, and an understanding can be compactly represented by a single graph, called
of the structure of the underlying stochastic models, the ARG (Griffiths and Marjoram 1996b). An exam-
can be used to suggest proposal distributions that should ple for a three-locus model is given in Figure 1. (Note
provide good approximations to the optimal proposal

that the difference between the ARG as we define it
distribution and hence lead to an efficient importance

here and the recombinant genealogy of Kuhner et al.sampling scheme. The proposal distribution we actually
2000 is the inclusion of mutations in the genealogy.)used is developed in the following sections.

Because different loci have different genealogies, theyThe proposal distribution that we choose is an approx-
may also have different most recent common ancestorsimation to the optimal proposal distribution for approxi-
(MRCAs). If the ARG of a sample is known back to themating the likelihood for one (�, �) value (which is called
oldest MRCA (OMRCA), then there is a simple analyticthe driving value). However, the ancestral histories that
expression for the distribution of the types in the sam-are sampled from it are used to approximate the likeli-
ple. If the types of the CA at each locus and the typeshood over a grid of (�, �) values. For (�, �) values
of the mutations are known, then this specifies preciselythat are not close to the driving value, the resulting
the type of the sample (see Figure 1). (The ARG ofapproximation of the likelihood can be poor (this is
Griffiths and Marjoram goes back further than the OM-also a problem for the existing importance sampling
RCA; however, the knowledge of the ARG beyond themethod and the MCMC method of Kuhner et al. 2000).
OMRCA contains no information about the sample.)An additional novelty here is that our importance sam-

We define a branch in the ARG to represent thepling method actually uses a set of driving values, which
lineage of a single chromosome. Initially the numberallows the likelihood to be estimated accurately over a
of branches in the ARG is equal to the sample size. Atmuch larger grid.
a coalescence event the number of branches decreases
by one, and at a recombination event the number of

Model and notation branches increases by one. Some branches will appear
in the genealogy of only a subset of the loci of interest.Assume we have data from a segment of a chromo-
For each locus, if a branch appears in the genealogysome. Each locus within this segment is assigned a posi-
for that locus then it is “ancestral” at that locus; other-tion, x, which lies in the interval [0, 1]. The positions
wise the branch is “nonancestral” at that locus. In Figure0 and 1 refer to the extremes of the segment of interest,
1, immediately after the first recombination (going backand a locus at position x will be that fraction of the

genetic distance along the segment. in time) there are five branches: Three are ancestral at
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Note that by defining the position of a locus in terms
of genetic distance, we are implicitly assuming that re-
combination is uniform across the [0, 1] interval. Other
assumptions, such as uniform mutation rates and (for
the finite-sites case) the assumption of the same muta-
tion model at each locus, are purely for notational sim-
plicity.

Importance sampling

While sampling from the distribution of ARGs is
straightforward, a more difficult problem is to draw
inference about the graph, and parameters of it, from
a sample of chromosomes at the tips. We perform full-
likelihood inference for the mutation and recombina-
tion parameters of the model by using importance sam-
pling to estimate the likelihood of the data for a given
value of � and of �. See Stephens and Donnelly (2000)
for background on the use of importance sampling for
likelihood inference in population genetic models.

Denote the types of the n sampled chromosomes by
An. We define the ancestral history of a sample to be the
ARG including mutations and their types (but without
interevent times). If we let G be an ancestral history,

Figure 1.—An ARG: a graphical description of the genealo- then the likelihood, L(�, �), can be written as
gies at three linked loci for a sample of size 4. The ARG has
been drawn back to the OMRCA (see text). Mutations are L(�, �) � p(An|�, �) � �p(An|G, �, �)p(G|�, �)dG,
depicted by circles. Both the types of the loci at the top of
the graph and the types of the mutations have been specified.

with the integral being taken over all ancestral historiesThis uniquely determines the type of the sample.
with n tips.

By our definition of G in the previous paragraph,
p(An|G, �, �) is an indicator function, taking the valueall three loci; one is ancestral for the leftmost locus and
1 if G is consistent with the data and 0 otherwise. Letone is ancestral for the two rightmost loci.
� be the set of all ancestral histories that are consistentThe distribution of the ARG of a sample depends on
with the data. Furthermore, let q(G) define a densitythe specific population genetic model. However, coales-
whose support contains �. Thencent theory gives us a good approximation to this distri-

bution for a large class of population genetic models
(which includes the Wright-Fisher model). This approxi- L(�, �) � �

�

p(G|�, �)
q(G)

q(G)dG
mate distribution is parameterized by population-scaled
mutation and recombination rates, � and �. These pa-

≈ 1
M�

M

i�1

p(Gi|�, �)/q(Gi), (1)rameters depend on the effective population size, N,
and the probabilities of mutation and recombination
per segment per meioses, u and r. For a Wright-Fisher where {G1, . . . , GM} are an independent sample from

the density q(G). Equation 1 is an importance samplingmodel and a diploid population, � � 4Nu and � � 4Nr.
The distribution also depends on the demographic approximation of the likelihood, and q(G) is called the

importance sampling proposal density. Each term inmodel, and we assume a constant population size and
random mating (though violations of either of these the sum (1), p(Gi|�, �)/q(Gi), is called an importance

sampling weight. The approximation given by (1) isassumptions can be incorporated within a coalescent
framework). For the specific details of the coalescent- unbiased and consistent. Its accuracy for finite M de-

pends on the variance of the importance samplingbased approximation to the distribution of ARGs see
Hudson (1983) and Kaplan and Hudson (1985). Here weights, which in turn depends on the choice of pro-

posal density q(G).we just note that this distribution can be characterized
as a continuous-time Markov chain if viewed backward We now consider how to make a sensible choice of

proposal density. Our approach is to calculate the opti-in time. Simulation of ARGs is straightforward, and they
provide a computationally efficient method for simulat- mal proposal density for a given value of � and �. While

sampling from this density is not possible, it can being samples from population genetic models with re-
combination. approximated. It is this approximation that is our pro-
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posal density in the importance sampling scheme. For mated this conditional density by considering a related,
but simpler, process.notational simplicity we omit the conditioning on � and

� in the rest of this section. When H contains j chromosomes, the new type � is
obtained by choosing a chromosome from H at randomOptimal proposal density: We consider the class of

proposal densities that generate events back in time in and then mutating it a geometric number of times. If
j� is the number of chromosomes of type � in H, thena Markov fashion. The proposal density for the next

event back in time will depend on the current state of the Stephens and Donnelly (2000) approximation to
�(�|H) isthe ARG: which loci are ancestral along which branches

and the types of the chromosomes at ancestral loci.
Thus a realization from the proposal density will be an �̂(�|H) � �

�

j�
j �

∞

k�0

j
j 	 � � �

j 	 ��
k

P k
��. (3)

ARG that is consistent with our sample, generated back
to the OMRCA. Equivalently, it will consist of a series This can be simplified because
of states H0(� An), . . . , H
, where H
 is the state of
the ARG when the OMRCA is reached. The optimal �

∞

k�0

j
j 	 � � �

j 	 ��
k

P k
�� � (1 � �j)(1 � �jP)�1

��,
proposal density is in this class of Markov proposal densi-
ties and has transition probabilities where �j � �/( j 	 �).

q(Hi	1|Hi) � p(Hi|Hi	1)�(Hi	1)/�(Hi), (2) Thus, it is necessary to calculate the matrices (1 � �jP)�1,
for �1, . . . , �n, only once. Once these have been calcu-where p(Hi|Hi	1) are the (known) forward-transition
lated, evaluating (3) for any � and H is computationallyprobabilities of the ARG, and �(Hi) is the probability
inexpensive. (Equation 3 can be applied directly forthat a sample from the population is of the same type
single-locus models; for multilocus models Stephensas Hi at the ancestral loci in Hi. (This can be proven
and Donnelly 2000 suggest a numerical integrationin an analogous way to Theorem 1 of Stephens and
technique.)Donnelly 2000.)

Approximating �(�|H) when � � 0: We now extendWe can simplify the “transition probabilities” (2) of
the approximation of Stephens and Donnelly (2000)the proposal density, but before doing so we need to
to the case where there is recombination. This involvesmake the following definition.
two extra complications. The first is how to deal with

Definition 1: Let �(·|H) be the conditional distribu- nonancestral loci, and the second is to allow for the
tion of the last chromosome in a sample, given that the effect of recombination.
other chromosomes are of type H, Our approximation to p(�|H) is just the probability

of a chromosome of type � under a stochastic process,
�(�|H) � �({H, �})/�(H).

which is simpler than the ARG but retains most of the
important properties of the ARG. In the infinite-sitesThe ratio �(Hi	1)/�(Hi) can be simplified because, for
case, the simplified process is as follows.all possible transitions, the majority of chromosomes

Initialization: Assume there are j chromosomes in H.are unaffected. For example, at a coalescent event of
Let s be the number of segregating sites in the infinite-two chromosomes of type �, Hi	1 is equal to Hi, but with
sites case. These occur at positions x1, . . . , xs in order.one less chromosome of type �, which we denote by
Denote the s � 1 midpoints of consecutive positions byHi � �. In this case
yi, i � 1, . . . , s �1. That is yi � (xi	1 	 xi)/2. Further,

�(Hi	1)/�(Hi) � 1/�(�|Hi � �). let zi � xi	1 � xi, for i � 1, . . . , s � 1.
Recombinations: For i � 1, . . . , s � 1, generate aSimilar equations can be derived for the other possible

recombination at point yi with probability zi�/(zi� 	 j),transitions.
independently of recombinations at yl, l � i. Let k be
the number of recombinations generated. These k re-Thus we can rewrite (2) in terms of one-dimensional

densities of the form �(�|H) and the known forward combinations split the chromosome into k 	 1 intervals.
Denote these by r � {r1, . . . , rk	1}.transition probabilities p(Hi|Hi	1). While the densities

are unknown, and thus we cannot directly sample from Imputation: Impute types at nonancestral segregating
sites in H. If pi is the proportion of a chromosome inthe optimal proposal density, they can be approximated.

Substituting these approximations into our formula for H that is of type i at a specific site, then a type i is
imputed at that site with probability pi. All imputationsthe optimal proposal density will give us a sensible pro-

posal density for the importance sampling. We now con- are done independently of each other.
Mutations: Treat each ri, i � 1, . . . , k 	 1 indepen-sider how to approximate �(�|H).

Approximating �(�|H) when � � 0: To consider a dently; for each ri simulate the type of the new chromo-
some, �, on that region according to the approximationsuitable approximation for �(�|H) for the ARG, we first

review the case where there is no recombination. In in Approximating �(�|H) when � � 0 (that is, simulate
the type of a complete chromosome from Equation 3,their work, Stephens and Donnelly (2000) approxi-
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and then use only the value of this type on the interval Estimating the likelihood surface: While our proposal
density was derived for estimating the likelihood at ari). The type of � is given by the union of its type on

each ri. specific (�, �) value, it can be used to estimate the
likelihood at other (�, �) values, using an idea fromThe process for the finite sites case is similar, with

sites being replaced by loci. Griffiths and Tavaré (1994a). We can think of a pro-
posal density being chosen for estimating the likelihoodThe approximation is a sum over all possible imputa-

tions and recombinations. This summation can be evalu- at a specific value (�1, �1), called the driving value, but
being used as a proposal density to estimate the likeli-ated efficiently, using dynamic programming. See ap-

pendix a for details. hood at other values of (�, �). Since the computational
cost of sampling from the proposal density is signifi-Proposal density: We have suggested an approxima-

tion to p(�|H), which then defines an approximation to cantly higher than the cost of calculating the prior prob-
ability of an ancestral history, using a sample from onethe optimal proposal density for our problem. However,

this approximation to the proposal density does not proposal density to estimate the likelihood at a large
number of points is computationally efficient.have attractive computational properties. In particular,

to sample from this density, it is necessary to calculate However, the proposal density is chosen to approxi-
mate the posterior density of ancestral histories giventhe transition probabilities for every possible transition.

We can substantially reduce the computation involved the data and the driving value of the parameters. If the
value of the parameters (�, �) where the likelihood isin sampling from our proposal density by making a

simple change. We choose a proposal density that can being estimated is sufficiently different from the driving
value, then this posterior distribution is likely to bebe sampled from by first choosing a chromosome, using

some simple probability rule, and then choosing an quite different from the optimal proposal density for
estimating the likelihood at (�, �). As a result the esti-event to occur to this chromosome. The probability that

a chromosome is chosen will be proportional to the rate mate of the likelihood could be poor.
Bridge sampling: One way around this is to use a setat which an event occurs to that chromosome, when

the information of the types of the chromosomes is of driving values (�1, �1), . . . , (�k, �k). A number of
ancestral histories, say N, could be simulated from eachignored. If ai is the fraction of loci of chromosome i that

are ancestral, bi is the fraction of loci of chromosome i of the proposal densities, q(�i,�i)(G). Each of these kN
histories could be used to estimate the likelihood sur-that are between ancestral loci, and there are j chromo-

somes in the current configuration of the ancestral his- face. If the set of driving values covers the area of the
parameter space of interest, then we could combinetory, then chromosome i is chosen with probability pro-

portional to ( j � 1) 	 ai� 	 bi�. the estimates of the likelihood surface to produce an
estimate that is accurate over the whole area of interestOnce a chromosome has been chosen, we use our

approximation to p(�|H) and the optimal proposal den- and not just around one point. A suitable method for
combining these estimates is bridge sampling (Mengsity (2) to calculate the probabilities of each possible event

occurring to that chromosome. For a mathematical for- and Wong 1996).
The basic idea of bridge sampling is to generate ourmulation of our proposal density see appendix b.

A further improvement can be obtained by noting sample from the mixture
that if the most recent common ancestor at a locus has
been found, then the probability of the type at that 1

k�
k

j�1

p(G|�j, �j, An) � �1k�k
j�1cjp(G|�j, �j), if G � �,

0, otherwise,
locus is independent of the types of the chromosomes
at all other loci and is distributed as a draw from the
mutation stationary distribution (Fearnhead 2001). (4)
Thus, the probability of our current state can be factor-

where c1, . . . , ck, are (unknown) normalizing constantsized into the probability of the most recent common
and � is the set of histories that are consistent with theancestor of that locus and the probability of the types
data. Given a sample, {G1, . . . , GkN}, from (4),of the chromosomes at all other loci. As the former is

known, we need only approximate the latter. Thus as 1
N �

kN

i�1

p(Gi|�, �, An)

�k
j�1cjp(G|�j , �j)

(5)we simulate the ancestral history back further in time,
we need not simulate it at that locus.

is an estimate of p(An|�, �).
Unfortunately we cannot sample directly from (4), so

Implementation instead we generate a weighted sample from (4) using
importance sampling. We useWe have considered estimating the likelihood for a

single value of (�, �), using importance sampling, and 1
k �

k

j�1

q(�j , �j )(G)have suggested a sensible proposal density for this by
approximating the optimal proposal density. We now
consider how we can extend this to estimating the likeli- as our proposal density in the importance sampling.

A further complication is that we do not know thehood surface over a grid of (�, �) points.
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normalizing constants c1, . . . , ck. Due to using impor- formance of their method on the basis of the second
criteria). The likelihood surface contains all the infor-tance sampling to sample from (4), we need only know

these normalizing constants up to a common factor. mation about � and � that is contained in the data,
and thus being able to estimate this likelihood surfaceAlso, cj � p(An|�j, �j), and so we can estimate these

normalizing constants using (5). As cj appears in (5), accurately should be the basis for good estimation of �
and �.we end up with a set of k � 1 simultaneous equations

for cj/c1, for j � 2, . . . , k. These can be solved iteratively As we note later, it is not obvious whether the general
statistical theory that usually makes maximum likelihood(see Meng and Wong 1996).

To use this iterative method for estimating the ratios the preferred method of estimation applies in this con-
text. Nonetheless, short of a fully Bayesian approachcj/c1, we need to store the histories Gi, i � 1, . . . , kN.

For most problems, where kN is of the order of millions, (see discussion), estimation via maximum likelihood
deserves serious consideration. It may happen that athis is impracticable. Instead, we store only the first M

histories. These histories are used to estimate the ratios method that estimates the likelihood poorly actually
results in an estimate that is closer to the truth for somecj/c1. Conditional on these estimates of cj/c1, j � 2, . . . ,

k, we can calculate our estimate of the likelihood surface simulated data sets. But it is hard to imagine this effect
being systematic, so that among “maximum-likelihood”sequentially (that is without needing to store the histor-

ies). Thus, no further histories are stored, and the esti- methods, choosing the method that most accurately
approximates the likelihood would seem prudent.mates of the ratios cj/c1 obtained from the first M histor-

ies are used to calculate the estimate of the likelihood Sensible interval estimation is a more important goal
than providing only point estimates with no accompa-surface on the basis of the set of kN histories.

Kuhner et al. (1995) used a related idea (that of nying measure of their uncertainty. Although the usual
theory linking the shape of the likelihood surface toGeyer 1991) to calculate likelihood curves for � (in the

absence of recombination) from k independent MCMC confidence intervals is also not obviously applicable
here, we provide encouraging empirical evidence insamplers, each run with a different driving value. How-

ever, the importance sampling schemes of Griffiths Properties of the maximum-likelihood estimator. Thus inaccu-
rate estimates of the likelihood surface could also leadand Tavaré (1994c), Griffiths and Marjoram (1996a),

and Stephens and Donnelly (2000) and the MCMC to inappropriate confidence intervals for parameters of
interest.schemes of Kuhner et al. (1998), Beerli and Felsenstein

(1999), and Kuhner et al. (2000) attempt to estimate As a result of these considerations, we compare the
three methods solely on the basis of (i). Note also thatthe likelihood curve (or surface) using a single driving

value. These methods will all suffer from the problem designing a suitable simulation study to compare the
methods on the basis of (ii) is difficult. Our perspectivethat, regardless of how efficient their algorithm is, the

estimate of the likelihood for values of the parameters on implementing a computationally intensive method
for approximating the likelihood surface is that youaway from the driving value may well be poor. It should

be possible to apply the idea of bridge sampling, using should not run the method for an arbitrary (large)
number of iterations and then use the MLEs for � andmultiple driving values, to each of these methods. This

may allow each method to estimate the likelihood curve �. Instead, you should run the method for sufficiently
many iterations until you have confidence in the finalaccurately over a larger region of parameter space.
approximation of the likelihood surface; only then
should this surface be used for inference (e.g., by usingComparison with existing methods
it to calculate the MLEs for � and �). For certain data

We compare our new method with the existing impor- sets, accurate estimation of the likelihood surface re-
tance sampling method of Griffiths and Marjoram quires much more computation than for others. As we
(1996a) and the MCMC method of Kuhner et al. (2000). discuss in more detail below, for some methods, and in
Each of these methods provides an approximation for particular for ours, it is possible to get a reasonable
the joint likelihood surface for � and � and then esti- indication from the output of the program as to whether
mates � and � by calculating the value of � and � for or not the likelihood is being approximated well. If it
which this approximate likelihood is maximized [the is not, the method should be run longer. A simulation
maximum-likelihood estimate (MLE) for the approxi- study that fixes in advance the number of iterations
mated likelihood surface]. Hence there are two possible is thus not the most practically useful comparison of
comparisons to make: different methods.

Diagnostics: An important consideration for compu-i. Compare each method on how accurately it approxi-
tationally intensive statistical methods is diagnosing,mates the likelihood surface.
from the output of the program, how accurately theii. Compare each method on the properties of its esti-
likelihood curve is being estimated and hence how longmates of � and �.
the program needs to be run to obtain accurate esti-
mates.Our perspective is that the first comparison is more

fundamental (although Kuhner et al. 2000 test the per- For importance sampling, the estimate of the likeli-
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hood for any (�, �) value is just the average of the weights i. our method (implemented by a program called
Infs).associated with each sampled history. The variance of

ii. the importance sampling method of Griffiths andthe estimator based on N runs of the importance sam-
Marjoram (1996a; implemented by a programpler is 2

W/N, where 2
W is the variance of the importance

called Recom58, which was kindly provided by theweights. (Note that for any proposal density, the mean
authors), andof the associated importance weights is the value of the

iii. the MCMC method of Kuhner et al. (2000; imple-likelihood we are trying to estimate. Thus the key to
mented by their program Recombine, which is availablechoosing a good proposal density is to choose one for
from http://www.evolution.genetics.washington.edu/which the variance of the importance weights is not too
lamarc.html).large.)

A related measure of the performance of an impor- For the microsatellite data, we compared
tance sampling method is the so-called effective sample
size (ESS). It is defined as i. our method (implemented by a program called Fins)

and
ESS � N �2

W/(2
W 	 �2

W), ii. the importance sampling method of Griffiths and
Marjoram (1996a; implemented by the programwhere �W is the mean of the associated importance
Twoloc, which was kindly provided by the authors).

weights (in our case, the likelihood that we are trying
to estimate). Currently there is not a version of the MCMC method

A helpful informal interpretation of the ESS is that of Kuhner et al. (2000) available for microsatellite data.
if after N runs of the importance sampling method, the For sequence data, we based our comparisons on the
ESS equals M, then the accuracy of our estimate will be data sets simulated in Wall (2000; kindly provided by
(approximately) the same as if we had been able to take the author). These are samples of 50 chromosomes,
M independent samples from the appropriate distribu- simulated under the infinite-sites model with � � 3.0
tion. (Note that if we fix N, then the larger the variance and � � 3.0. For ease of comparison, we consider solely

estimating the likelihood curve for � (and hence theof the importance weights, the smaller the ESS.)
MLE for �), conditional on the true value of �. ForIn principle, one advantage of importance sampling
approximating the likelihood curves, Infs used five driv-over MCMC is that the independence of the samples
ing values (with bridge sampling): � � 3.0, and � �makes it straightforward to assess the accuracy of the
{1.0, 2.0, 4.0, 6.0, 9.0}; while Recom58 (which allowslikelihood estimates. Thus, if we have N runs produc-
only a single driving value to be specified) used theing importance weights w1, . . . , wN, we can estimate
driving value of � � 3.0 and � � 3.0. Also, Recom582

W by the sample variance of the importance sampling
requires knowledge of the type of the most recent com-weights, s 2

W. We can then estimate the variance of our
mon ancestor, and the true type was used. In practiceestimator of the likelihood by s 2

W/N and estimate the
this would either have to be inferred from an outgroup,ESS as
guessed, or the program would need to be run for a
number of different, plausible, values of the type of the(RN

i�1wi)2

RN
i�1w 2

i

. (6)
common ancestor.

The program Recombine uses MCMC to simulate
Care must be taken, as s 2

W can substantially underesti- from the posterior distribution of recombinant genealo-
mate 2

W, and (6) overestimate the true ESS, if sufficient gies (which are similar to our ancestral histories but do
runs are not used. See the discussion for a more de- not include mutations), conditional on a (�, �) value
tailed review of this problem. (the driving value). Likelihood surfaces are then calcu-

Diagnostics for an MCMC method are less straightfor- lated using importance sampling. As with Infs, the accu-
ward. Because the recombinant genealogies sampled racy of the likelihood surface may be poor away from
by the Markov chain are not independent, the sample the driving value. The authors suggest (see Kuhner et
variance of the likelihood across these genealogies is al. 2000) that Recombine should be implemented with
no longer a suitable measure of accuracy (as it ignores a number of short runs, followed by a long run of the
the positive correlation between sampled recombinant MCMC sampler. After each short run, the driving value
genealogies). There is a considerable literature on diag- for the following run is set to be the MLE for the current
nostics for MCMC (for example, see Brooks and Rob- run. The final likelihood surface is based solely on the
erts 1998), but these diagnostics use the raw output of sample of ancestral histories obtained from the final
the Markov chain, which is not available to the user of long run. The idea behind this is that the short runs
the MCMC method of Kuhner and colleagues. should enable Recombine to find a good driving value,

Implementation: We make comparisons for both se- which is then used for the long run.
quence and microsatellite data. For sequence data we We initially implemented Recombine as suggested by

the authors. However, we found that often Recombinecompared
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would estimate � as �0.2, which is clearly inconsistent
with the number of segregating sites in the data sets.
The reason for this appeared to be that for successive
short runs of the MCMC sampler the estimated MLE
for � would become smaller. Thus the final long run of
the MCMC sampler would have a driving value close to
0, and the final MLE for � is biased toward this driving
value. To overcome this problem, we “cheated” and set
Recombine to use � � 3.0 as its driving value. Short
runs were still used for Recombine to find a good driving
value for �. While the true value of � would not be
known in practice, a sensible approach would be to fix
the driving value of � to be Waterson’s estimate of �
(Waterson 1975), which is based on the number of
segregating sites in the sample, and which in the au-
thors’ experience is usually close to the MLE for �. This

Figure 2.—Comparison of six estimates of the likelihoodapproach substantially reduced, but did not eradicate, surface for data set 19 in Wall (2000). Each estimate is based
the proportion of times that Recombine gave implausi- on an independent run of our method, Infs. Five estimates
bly low estimates for the MLE for �. (One possible rea- are based on runs of length 1 million, and one (shown by the

thick line) is based on a run of length 10 million.son for the inaccuracies of Recombine is that the single
long run uses only one driving value; Stephens 1999
shows that for Coalesce, the analogous MCMC program

million. For both programs, we used a different singlefor models with no recombination, the estimate of the
driving value for each of the five short runs. All runslikelihood will have infinite variance for values of � more
used a � driving value of 2.0, but the driving values ofthan twice the driving value.)
� varied (� � 1.0, 2.0, 3.0, 4.0, and 5.0). The long runsInitially we ran Infs, Recom58, and Recombine on
were an attempt to obtain an accurate estimate of thethe 20 data sets from Table 2 of Wall (2000), using 1
true likelihood surface. For Fins, four driving valuesmillion iterations in each case. For a more detailed
(� � 2.0 and � � {1.0, 2.0, 4.0, 8.0}) and bridge samplingcomparison, we then ran each method six independent
were used, while for Twoloc (which only allows a singletimes (five runs of 1 million and one run of 10 million)
driving value), the driving value � � � � 2.0 was used.on a single data set (data set 19; the data set for which
A run of length 1 million from Fins took 1.5 hr on athere was least agreement between the three methods,
400-MHz Pentium PC, while the same length run onwith estimates of � ranging from 0.6 to 4.8). The comput-
Twoloc took twice as long.ing time for Infs and Recom58 varies considerably be-

Results of comparison: As there is no quantitativetween data sets (it depends a lot on the number of
measure of accuracy that is obtainable from the outputsegregating sites in the data set). For each data set, the
of Recombine, we can only compare the performancecomputing time for a million iterations of each of the
of this MCMC method with the importance samplingtwo methods was comparable and varied between 2 and
methods of Infs and Recom58 by looking at approxi-12 hr on a Pentium 400-MHz PC. The computing time
mated likelihood curves for each method on the samefor Recombine depended less on the data set but often
data set. Figures 2–4 each show six approximations ofvaried considerably (by up to an order of magnitude)
the likelihood curve for data set 19; for each of thebetween independent runs on the same data set. In
figures, the approximations are obtained from indepen-particular, the computing time depends a lot on the
dent runs of one of the three methods. While the ap-driving value for � that is used in the MCMC sampler
proximated likelihood curves that were obtained from(which can differ across independent runs on the same
the six runs of Infs are very similar (see Figure 2), thosedata set). The average computing time for Recombine
obtained by the MCMC method, Recombine, vary dra-was comparable to the computing time for runs of the
matically (see Figure 3). The value of � for which thesame length using the other two methods.
maximum of the likelihood curve is attained varies fromFor the microsatellite data set we simulated a sample
4.2 to 5.7 for the curves obtained by Infs but from 0.0of 50 chromosomes at two microsatellite loci; the data
to 4.8 for Recombine. (Note that Recombine allows forwere simulated with � � 2.0, and for each locus we
the possibility of repeat mutations, while Infs does not,assumed a symmetric stepwise mutation model with � �
so comparing the estimated likelihood curves obtained2.0. Again we only considered inference for � condi-
by the two programs for the same data set may be in-tional on the true value for �.
appropriate. The variability of approximations of theBoth importance sampling programs Fins and Twoloc
likelihood across independent runs of a single programwere run six independent times on this data set: five short

runs of length 1 million and one long run of length 10 gives a measure of the computational efficiency of that
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TABLE 1

Comparison of the accuracy of likelihood curves
approximated by Infs and Recom58

Method

Data set Infs (ESS) Recom58 (ESS)

1 610 5
2 38 22
3 37 2
4 190 4
5 1 1
6 25 31
7 340 77
8 430 23
9 200 2

10 7000 2
11 470 6
12 5000 80
13 8 1
14 23 23
15 41 8
16 17 4

Figure 3.—Comparison of six estimates of the relative likeli- 17 1500 2hood surface for data set 19 in Wall (2000). Each estimate 18 21 9is based on an independent run of the method of Kuhner et
19 1000 4al. (2000), Recombine. Five estimates are based on runs of
20 3500 51length 1 million, and one (shown by the thick line) is based

on a run of length 10 million. Shown is a comparison of our method, Infs, and the method
of Griffiths and Marjoram (1996a), Recom58, on 20 simu-
lated data sets. For each data set the estimated ESS for the

method, which can be meaningfully compared across two importance sampling methods is given. The larger the
true ESS the more accurate the estimate of the likelihood isdifferent programs.)
(see text for more details).In many of the examples we considered, the behavior

of Recombine was poor: Similar results were obtained
from Recombine on the other data sets where the MLE much that the MLE for � varied from 0.0 to 4.8 across
for � is nonzero (data not shown). For example, for data six independent runs (each of length 1 million). Wall
set 13, the likelihood curves from Recombine varied so (2000) also reported large variation in the value of the

MLE estimated by Recombine from independent runs
when analyzing data set 11. For data sets where the MLE
for � is zero, Recombine did generally estimate the MLE
as zero, but the slope of the estimated likelihood curve
(which contains information about how accurate the
MLE is) varied considerably across independent runs.

In contrast we found that the estimates of the likeli-
hood curves obtained by Infs were generally similar
across multiple independent runs on the same data set,
particularly for data sets where the estimated ESS was
large. The exceptions were the two data sets with small-
est ESS (see Table 1): data sets 5 and 13. For both these
data sets, the magnitude of the likelihood surface varied
by up to a factor of 10 across six independent runs of
Infs. For data set 13, the maximum-likelihood estimates
of � varied from 2.5 to 5.3, and 95% confidence intervals
for � varied between [0.8, 8.8] and [0.9, 12]. The esti-

Figure 4.—Comparison of six estimates of the likelihood mated relative-likelihood curves for data set 5 are shown
surface for data set 19 in Wall (2000). Each estimate is based in Figure 5. In this case, the maximum-likelihood esti-
on an independent run of the method of Griffiths and

mate for � varied from 2.3 to 4.0, and 95% confidenceMarjoram (1996a), Recom58. Five estimates are based on
intervals varied between [1.0, 4.6] and [1.0, 8.9]. Forruns of length 1 million, and one (shown by the thick line)

is based on a run of length 10 million. both these data sets the inaccuracies of the estimated
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Figure 5.—Comparison of six estimates of the likelihood
surface for data set 5 in Wall (2000), one of the two data
sets for which Infs performed worst. Each estimate is based
on an independent run of our method, Infs. Five estimates
are based on runs of length 1 million, and one (shown by the Figure 6.—Comparison of estimates of the relative likeli-
thick line) is based on a run of length 10 million. hood curve (i.e., each curve has been normalized so that its

maximum value is 1.0; the unnormalized curves vary by more
than a factor of 500) for � (conditional on � � 2.0) for microsa-

likelihood surfaces could be diagnosed from the ESSs, tellite data, obtained from the method of Griffiths and Mar-
joram (1996a), Twoloc. The thin lines are estimates obtainedwhich were small for all runs of Infs.
from runs of length 1 million, each with a different drivingFor data set 19, the general shapes of the likelihood
value for � (each curve is labeled with its driving value of �).curves approximated by Recom58 are similar (see Fig- The thick line is an estimate based on a single run of length

ure 4), but the curves themselves are of different magni- 10 million.
tudes. In contrast, the approximations of the likelihoods
obtained by Infs are similar both in shape and magni-
tude (see Figure 2). A comparison of Figures 2 and 4 small (which suggests that the sample from the proposal

density is too small), then it is possible that it is anshows that Infs and Recom58 are producing substan-
tially different approximations of the shape of the likeli- overestimate of the true ESS. Thus, sensible compari-

sons of the ESSs of the two importance sampling meth-hood curve. By comparing the ESSs for both programs
(see Table 1) we have strong evidence that it is Infs that ods are possible only for the data sets where the esti-

mated ESSs are large. For example, for data sets 10, 12,is producing the more accurate approximation. For the
runs of length 10 million, the ESS of Infs was �10,000, 19, and 20, the estimated ESSs for Infs are �1000 and

are likely to be an accurate estimate of the true ESSs. Forwhile that of Recom58 was still �10 (results not shown).
(This misbehavior of Recom58 is analagous to that of each of these data sets, the estimated ESS of Recom58 is

between two and four orders of magnitude smaller (andthe Griffith and Tavaré importance sampling method;
see Stephens and Donnelly 2000.) Further support is is, if anything, likely to be an overestimate of the true

ESS for Recom58). This increase in efficency by fourgiven by the results of Section 5.2 of Stephens and
Donnelly (2000): They show that poor estimation of orders of magnitude is typical in our experience.

Now consider the microsatellite data set. The esti-the likelihood curve often takes the form of underesti-
mation. For our example the estimate of the likelihood mates of the relative likelihood curve for � (conditional

on � � 2.0) obtained from the importance samplingcurve obtained by Recom58 is an order of magnitude
smaller than that of Infs. method of Griffiths and Marjoram (1996a), Twoloc,

are shown in Figure 6. In this figure each likelihoodA more detailed comparison of the performance of
the two importance sampling methods can be carried curve has been normalized so that it has a maximum

relative likelihood of one. The unnormalized estimatesout because a natural comparison of importance sam-
pling methods is via their ESSs. Table 1 gives the esti- of the likelihood from the six independent runs vary

by more than a factor of 500. Figure 6 shows that theremated ESS from Infs and Recom58 for each of the 20
data sets. These give a gauge as to how accurately the is no agreement between the estimates of the relative

likelihood across the independent runs. In particularlikelihood curve is estimated by the two importance
sampling methods. As noted above, if too small a sample the estimated MLE of � appears to be affected by the

driving value of �. For the five short runs, the estimateis drawn from the proposal density, then the estimate
of the ESS can overestimate the true value (Neal 1998). of the MLE of � increases as the value of the driving

value for � increases.In particular this means that if the estimated ESS is
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Figure 7.—Comparison of estimates of the likelihood curve Figure 8.—Comparison of estimates of the likelihood curve
for � (conditional on � � 2.0) for microsatellite data, obtained for � (conditional on � � 2.0) for microsatellite data, obtained
from our method, Fins. The thin lines are estimates obtained from our method, Fins. All estimates are obtained using four
from runs of length 1 million, each with a different driving driving values and bridge sampling. The thin lines are esti-
value for � (� � 1.0, 2.0, 3.0, 4.0, and 5.0). The thick line is mates based on runs of length 100,000, and the thick line is
an estimate based on a single run of length 10 million, ob- an estimate based on a run of length 10 million.
tained using four driving values and bridge sampling.

tions from the assumptions of a constant population
size and random mating.The estimates of the absolute likelihood curve for �

The authors believe that certain sample configura-(conditional on � � 2.0) obtained from our importance
tions could result in MLEs for � that are infinite andsampling method, Fins, are shown in Figure 7. There
hence that the mean and variance of the estimates ofis considerably more agreement between the estimates
� and �/� are infinite. Thus we summarize our results inof the likelihood for � across the independent runs. This
terms of the median estimate and the summary statistic gis not only agreement about the shape of the likelihood
of Wall (2000): the proportion of times the MLE iscurve but also agreement on the magnitude of the likeli-
within a factor of 2 of the truth.hood.

Confidence intervals were calculated using a chi-The estimated ESS for the long run is large (�10,000)
square approximation to the likelihood-ratio statistic (asfor almost all values of �, which suggests that this is an
used in Kuhner et al. 1998). This approximation is basedaccurate estimate of the true likelihood curve. For each
on an asymptotic result for independent data. The resultof the short runs the likelihood is accurately estimated
states that (under certain regularity conditions, whichclose to the driving value. However, the likelihood tends
include the independence of each element of the sam-to be poorly estimated away from the driving value. If
ple) the distribution of the likelihood-ratio statistic tendsbridge sampling is used with four driving values (� �
to a chi-square distribution as the sample size tends to2.0 and � � {1.0, 2.0, 4.0, 8.0}), accurate estimates of
infinity. For population genetics data the chromosomesthe likelihood curve for all values of � between 0.0 and
are not independent, and so this result need not apply.10.0 can be obtained using runs of length 100,000 (see
Nonetheless, one aim of our simulation was to assessFigure 8).
the coverage properties of intervals constructed as if
this theory did apply.

Properties of the maximum-likelihood estimator
Our simulation study is based on generating 100 sam-

ples from a chosen model (the simulations were carriedWe carried out a simulation study to analyze the per-
formance of maximum-likelihood estimation of � and out using a program by R. Hudson, and because of the

potential application to gene mapping, we chose models� for sequence data. We consider properties of the MLEs
for �, �, and �/�. The reason for estimating �/� is that and parameter values that are plausible for humans)

and then running the program Infs (using bridge sam-often, by using comparisons with other species, we can
estimate � , so (as r � ��/�) to estimate r we only need pling) on each of these samples to obtain estimates of

the MLE of � and � and approximate confidence inter-an estimate of �/�.
We considered two cases, first looking at the sampling vals. The accuracy of each estimate of the likelihood

was gauged using its ESS, and, where necessary, usingproperties of the MLE and coverage properties of con-
fidence intervals, when our modeling assumptions are multiple independent runs with different driving values.

The number of runs required increases quickly withcorrect. Second we considered the robustness of the
MLE and associated confidence intervals under devia- both the number of segregating sites and the amount
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TABLE 2

Effect of sample size on sampling properties of MLEs

Sample � in � in Med �/�
size Mean (�̂) SD (�̂) C.I. Med (�̂) g(�̂) C.I. (�̂/�̂) g(�̂/�̂) in C.I.

50 0.99 0.54 96 0.55 0.23 100 0.67 0.24 99
100 0.95 0.41 96 0.65 0.20 99 0.48 0.13 99
200 1.00 0.44 97 0.2 0.22 100 0.25 0.25 99

Shown are estimated means and standard deviations of the maximum-likelihood estimates of �; estimated
median of maximum-likelihood estimates of � and �/�; g, the proportion of times that the MLE is within a
factor of 2 of the truth; and coverage properties of an �95% confidence interval (calculated using a chi-square
approximation to the likelihood ratio statistic). Results are based on 100 samples (simulated with � � � �
1.0) for each of three sample sizes.

of recombination. When analyzing a sample of size 50, � � 1.0, 2.0, and 3.0 (corresponding for humans, again
assuming an effective population size of 10,000, andsimulated with � � � � 1.0, �400,000 iterations were

required. This took between 1⁄2 and 1 hr on a modern genome-wide average rates for mutation and recombi-
nation, to sequences 2.5, 5.0, and 7.5 kb long). A sum-PC (with an Intel Pentium II 400-MHz CPU). By compar-

ison, when analyzing a sample of size 50 generated with mary of the results is given in Table 3, and histograms
of the estimates for � and � are given in Figure 9 (again,� � � � 3.0, on average 5 million iterations were used,

which took 1 day’s computing time using a single 400- the histograms for �/� are similar to those for �). In-
creasing the size of the sequence does improve the accu-MHz PC. (The computational burden of obtaining the

MLE for a single data set means that a detailed simula- racy of the MLE. In particular, it appears to increase
the median of the MLE for � and �/� and also increasetion study of properties of the estimator is computation-

ally extremely demanding.) the values of g. These are both consequences of the fact
that the skewness in the distribution of MLEs for �Sampling properties of the MLE: First we considered

the effect of the sample size on the accuracy and cover- reduces as the sequence length increases. For both � �
� � 2.0 and � � � � 3.0, the simulation results areage properties of the MLE. We simulated samples of

sizes 50, 100, and 200 from an infinite-sites model with consistent with the approximate confidence intervals
having the correct coverage probabilities.� � � � 1.0, assuming a constant population size and

random mating. For example, for humans, assuming an Robustness properties of the MLE: To test the ro-
bustness properties of the MLE, we considered two devi-effective population size of 10,000 diploid individuals,

these values of � and � correspond to a 2.5-kb sequence ations from our underlying model: nonconstant popula-
tion sizes and nonrandom mating (the models we used,(assuming genome-wide average rates for mutation and

recombination). and their effect on the underlying genealogical tree,
are discussed in Donnelly and Tavaré 1995). In bothA summary of the results is given in Table 2, and

histograms of the estimates of � and � obtained from cases, � and � are not natural or well-defined quantities
(they depend on how the effective population size issamples of size 50 are given in Figure 9 (the histograms

for samples of size 100 and 200 are similar; also the defined). By comparison, �/� is a natural parameter (it
is equal to r/�). Therefore, we focus solely on how wellhistogram for estimates for �/� is similar to that for �).

The MLE performs well at estimating �. The distribution �/� is estimated.
We considered three models with exponential popu-of MLEs of � is highly skewed in all cases. The median

MLE of � is significantly less than the truth, whereas lation growth. The first model assumes that t genera-
tions in the past, the effective population size is Nt �the average value is close to, and slightly larger than,

the truth for all three simulation studies (results not N0exp{�(�t/4N0)}, where N0 is the current effective pop-
ulation size and � is a parameter that governs the speedshown; remember the theoretical mean is likely to be

infinite). of growth. We took � � 0.7 (the MLE from the �-globin
data set of Harding et al. 1997). If N0 � 10,000 diploidIncreasing the sample size has no noticeable effect

on the performance of the MLE. The randomness in individuals, then this corresponds to the effective popu-
lation size halving every 20,000 generations.the simulation study is much larger than any effect that

increasing the sample size has. There is significant evi- The second and third models assume a constant pop-
ulation size, followed by a recent sudden expansion.dence that the putative 95% confidence intervals for �

and �/� are conservative for all three sample sizes (P From mitochondrial DNA, it has been suggested that a
recent sudden human population expansion occurredvalues � 0.006 and 0.037 for the one-sided test).

Second, we considered the effect of sequence length between 33,000 and 150,000 years ago (Sherry et al.
1994; Rogers and Jorde 1995). For both models weon the MLE. We simulated samples of size 50 with � �
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Figure 9.—Histograms of �̂/� (left column) and �̂/� (right column) for different sequence lengths. The top row is for � �
� � 1.0, the middle row for � � � � 2.0, and the bottom row for � � � � 3.0. All histograms are based on estimates from 100
data sets of size 50.

assumed an effective population size of 10,000 diploid 1600 generations ago, and in the third it started 4000
generations ago. (This model is related to the one usedindividuals, followed by an exponential expansion to a

current effective population size of 5,000,000 diploid in Kruglyak 1999 to study the extent of linkage disequi-
librium in the human genome).individuals. In the second model the expansion started

TABLE 3

Effect of sequence length on sampling properties of MLEs

Mean SD � Med � Med �/�
� (� �) (�̂/�) (�̂/�) in C.I. (�̂/�) g(�̂/�) in C.I. (�̂/�̂) g(�̂/�̂) in C.I

1 0.99 0.54 96 0.55 0.23 100 0.67 0.24 99
2 1.00 0.43 95 0.65 0.41 98 0.71 0.35 97
3 1.00 0.31 100 0.8 0.50 94 0.8 0.50 92

Shown are estimated means and standard deviations of the maximum-likelihood estimates of �; estimated
median of maximum-likelihood estimates of � and �/�; g, the proportion of times that the MLE is within a
factor of 2 of the truth; and coverage properties of an �95% confidence interval (calculated using a chi-square
approximation to the likelihood ratio statistic). Results are based on 100 samples (each of size 50) for each
of the three sequence lengths.
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TABLE 5TABLE 4

Robustness to population growth Robustness to population structure

Migration rate Med (�̂/�̂) g (�̂/�̂) �/� in C.I.Model Med (�̂/�̂) g(�̂/�̂) �/� in C.I.

1 0.4 0.19 100 6.25 � 10�6a 0.27 0.24 73
6.25 � 10�6b 0.40 0.25 862 0.6 0.24 99

3 0.4 0.28 97 2.5 � 10�5a 0.63 0.46 96
2.5 � 10�5b 0.40 0.29 91

Shown are the median of the MLE of �/�; g, the proportion 2.5 � 10�4a 0.48 0.33 96
of times the MLE is within a factor of 2 of the truth; and 2.5 � 10�4b 0.43 0.37 97
coverage properties for the �95% confidence interval for �/
� under population growth. Model 1 has slow exponential Shown are the median of the MLE of �/�; g, the proportion
growth (population doubling every 20,000 generations to a of times the MLE is within a factor of 2 of the truth; and
current size of 10,000). Models 2 and 3 have recent rapid coverage properties for the �95% confidence interval for �/�
exponential growth from an effective population of 10,000– under population growth. Samples were simulated under a
5,000,000. In model 2 the growth started 1600 generations two-island model, with a diploid population size of 10,000 on
ago, and in model 3 it started 4000 generations ago. Results each island, with migration rates of 6.25 � 10�6, 2.5 � 10�5,
are based on 100 samples for each model, with r � � � 2.5 � and 2.5 � 10�4 (these represent the fraction of each genera-
10�5, so the true value of �/� is 1. tion that are migrants).

a Twenty-five chromosomes sampled from each population.
b Fifty chromosomes sampled from a single population. Re-

sults are based on 100 simulated samples from each model,For all three models, samples were generated with
with r � � � 2.5 � 10�5, so the true value of �/� � 1.r � � � 2.5 � 10�5, which corresponds to a 2.5-kb

region (assuming genome-wide average recombination
and mutation rates). The results of the simulation stud- case. As might be expected, if the migration rate is small,
ies are shown in Table 4. then the performance of the MLE for �/� from data

For all three models, the performance of the MLE where all chromosomes are sampled from a single popu-
for �/� is comparable to its performance in the constant lation is better than the MLE from data with chromo-
population size case. Despite the model misspecifica- somes sampled from both populations.
tion, there is no evidence to support the hypothesis For the two models with the larger migration rates,
that the putative 95% confidence intervals for �/� are the simulation results are consistent (at the 95% level)
anticonservative. In fact, there is significant evidence with the approximate confidence intervals having the
that they are conservative for model 1 (P � 0.006) and correct coverage probabilities. However, when 4Nm �
model 2 (P � 0.037). In the former case, this is due to 0.25 the confidence intervals are anticonservative. This
the lack of information in the data resulting in ex- is because patterns in the data simulated under this
tremely large confidence intervals. model are consistent with little recombination and the

To test robustness under nonrandom mating, we used MLE often severely underestimates the true value. In
an island model, with random mating within the popula- fact, of the 41 data sets for which the confidence inter-
tions of each island and migration between the islands. vals did not contain the true value of �/�, only once
For simplicity, we considered a model with just two is- was the value of �/� overestimated.
lands and assumed that the population size of each A common measure of population structure is FST

island was identical (10,000 diploid individuals). We (Wright 1951; Cavalli-Sforza et al. 1994, pp. 29–30,
considered three migration rates (m): They corre- for a definition). FST can be related to the population-
sponded to 6.25 � 10�6, 2.5 � 10�5, and 2.5 � 10�4 of scaled migration rate (Hudson et al. 1992): For a two-
each generation being migrants (the scaled migration island model, assuming a small mutation rate, FST ≈ 1/
rates, 4Nm, are 0.25, 1, and 10, respectively). For all (1 	 16Nm). So our simulations refer to populations
cases we simulated data with r � � � 2.5 � 10�5, which with FST of 0.5, 0.2, and 0.024. For humans, observed
corresponds to a 2.5-kb region (assuming genome-wide values of FST are on the order of 0.01 for closely related
average recombination and mutation rates). For each populations and 0.1–0.3 for distantly related popula-
migration rate we simulated both a sample of size 50 tions (Cavalli-Sforza et al. 1994). Our results thus
from a single population and one consisting of samples suggest that the MLE for �/� performs adequately and
of size 25 from each population. that the approximate confidence interval is robust for

The results are given in Table 5. Once again the levels of population structure consistent with most hu-
median values of the MLE for �/� underestimate the man populations.
truth (in this case the mean values were also �1, perhaps
indicative that population structure creates patterns

DISCUSSIONconsistent with no or little recombination). For the two
larger migration rates, the performance of the MLE, as Estimation of recombination rates from population

data is an important and challenging problem. Methodsmeasured by g, is better than in the random-mating
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based on summary statistics do not use the full informa- for most organisms the recombination rate is the same
order of magnitude as (or greater than) the mutationtion contained in the data, while full-likelihood-based

methods struggle due to the difficulty in accurately esti- rate (e.g., Drosphila and bacteria: see Feil et al. 1999;
Andolfatto and Przeworski 2000).mating the likelihood curve. We developed an impor-

tance sampling algorithm that can estimate the joint An additional difference is that even for the parame-
ter values they considered, Kuhner et al. (2000) did notlikelihood of � and �. Existing methods have been devel-

oped by Griffiths and Marjoram (1996a) and Kuh- attempt to assess how well their method approximated
the likelihood surfaces. Instead, they examined the aver-ner et al. (2000). Nielsen (2000) considers a related

problem of estimating recombination rates from single age behavior, across many simulated data sets, of their
MLE. This average behavior was encouraging, as it wasnucleotide polymorphism data.

We noted that there are two different sorts of compari- also in the study of Wall (2000) for � � � � 3.0.
Nonetheless, it remains disconcerting that for Recom-sons possible between these methods. The possibilities

are to compare the methods on how well they approxi- bine, as seen in Figure 3, the likelihood surface, and
hence the MLE, obtained for a particular data set de-mate the likelihood surface and to compare the meth-

ods on the properties of the resulting “maximum-likeli- pends crucially on the choice of random number seed.
All the methods for estimating recombination rateshood” estimates of the recombination and mutation

rates. We have taken the view that, as the principal aim from population data are very computationally inten-
sive. As such, gains in efficiency have real practical value.of each method is to approximate the likelihood surface,

the most appropriate comparison is the first of these. The computational time and cost of analyzing real data
may still seem large, but in most cases it will be muchFor the two importance sampling methods, a natural

comparison is via the ESS, defined in Diagnostics. (The smaller than the time and cost of collecting the data in
the first place. One word of caution, though, is that theESS is directly related to the variance of the estimate

of the likelihood.) We calculated these for 20 different computational time increases rapidly with the size of
data set (particularly as the length of sequence, as mea-sets of sequence data (see Table 1; each data set was

simulated with � � � � 3.0 under an infinite-sites sured by � and �, increases). Further research is still
needed for implementing full-likelihood (or maybe ap-model). The results suggest that the new importance

sampling method is up to four orders of magnitude proximate-likelihood) methods for large data sets. One
example of current research in this area is the methodmore efficient than the importance sampling method

of Griffiths and Marjoram (1996a). Further results proposed by Wall (2000).
One novelty of our method is the use of bridge sam-showed that our method is also substantially more effi-

cient at analyzing microsatellite data. pling. This enables multiple driving values to be used,
with the results for these driving values being combinedTo compare our method with the MCMC method of

Kuhner et al. (2000), we concentrated on looking at in a sensible manner. Using only a single driving value
can result in a poor estimate of the likelihood surfacemultiple independent approximations of the likelihood

curve for � for a given data set (no simple comparison, away from this driving value. This can result in the
likelihood (away from the driving value) being underes-like that based on estimated ESS values, is possible in

this case). The results for one data set are given in timated with a high probability, which in turn results
in a bias of the MLE toward the driving value. By usingFigures 2 and 3. Figure 3 shows considerable variation

across the independent approximations of the likeli- multiple driving values this problem can be substantially
overcome. Bridge sampling could also be applied tohood curve by the MCMC method. In contrast, the

independent approximations obtained by our impor- both the importance sampling method of Griffiths
and Marjoram (1996a) and the MCMC method oftance sampling method are very similar (see Figure 2).

Similar results were obtained for different data sets Kuhner et al. (2000) and may enable each method to
approximate the likelihood surface well over a larger(see Results of comparison for more details). In fact, the

performance of Recombine was poor on the majority grid of (�, �) values.
It is important, when using any computationally inten-of data sets to which we applied it. In Kuhner et al.

(2000), the average performance of the MLE for �/� was sive statistical method, to check the accuracy of the
estimate of the likelihood curve before using it for infer-recorded for simulated data sets with various different

parameter values. The results there were encouraging ence. For importance sampling methods, one measure
of the accuracy for importance sampling schemes is theand at first seemed to contradict the results we obtained

from using Recombine. One reason for this may be the ESS (see Diagnostics). If the ESS could be calculated
exactly, then it would give a direct measure of the accu-substantially different parameter regimes considered by

Kuhner et al. (2000) compared to those we considered. racy of the approximation of the likelihood surface. A
100-fold increase in ESS equates to a 10-fold increaseKuhner et al. (2000) simulated data where the rate of

recombination was small compared to the mutation rate in accuracy: An ESS of 100 suggests the approximation
is accurate to within 10%, and an ESS of 10,000 suggests(�/� was between 0.00 and 0.08), and Recombine may

perform better for these parameter values. However, the approximation is accurate to within 1%. (In practice
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the positive correlation between estimates of the likeli- A consideration in using full-likelihood-based meth-
hood at similar parameter values will make the approxi- ods is that little is known theoretically about the behav-
mation of the relative likelihood much more accurate ior of the MLE. It is not known whether the MLE for
than is suggested by the ESSs.) � is consistent or whether, asymptotically, the likelihood-

Unfortunately, the ESS cannot be calculated analyti- ratio statistic has a chi-square distribution. Even if these
cally and has to be estimated. Often the estimated ESS asymptotic results apply, it will still not be clear whether
can be significantly larger than the true ESS. So, while the resulting approximations are accurate for real data
a low estimated ESS is indicative of a poor estimate, a sets whose size is far from the asymptotic limit.
large estimated ESS does not guarantee an accurate In Properties of the maximum-likelihood estimator we used
one. An improvement on using the ESS from a single a simulation study to analyze the sampling properties
run is to track the value of the ESS as the number of of the MLE for � and � and to consider the robustness
iterations increases. If the estimate of the ESS is accu- of the MLE to the demographic model. The amount of
rate, then this should increase linearly with the number information in the data depends primarily on the length
of iterations. If this happens, (and particularly if the of the sequence being analyzed and only very slightly
ESS is large) the estimated ESS should be close to the on the number of chromosomes in the sample. For
truth. A parallel approach is to use multiple runs with small sequences (� � 1.0, which models an “average”
different driving values. If the results from these inde- 2.5-kb sequence of human DNA), the MLEs for � and
pendent runs are consistent, then that is evidence that �/� performed poorly. For larger sequences (� � 2.0
the results are accurate. (See Stephens and Donnelly and 3.0), their performance improved substantially. The
2000 for more discussion on convergence diagnostics.) MLE for � performs better than the MLE for � (uni-

Diagnostics for MCMC methods are less straightfor- formly across all the parameter values we chose). The
ward, as the values simulated by the Markov chain (in usual theory for obtaining confidence intervals for
the case of Recombine these “values” are recombinant MLEs does not apply in this setting. Nonetheless, ap-
genealogies) are not independent. However, there is proximate 95% confidence intervals, suggested by that
considerable literature on MCMC convergence diagnos- theory, for both � and � showed no evidence for being
tics, and many of these diagnostics could be applied to anticonservative.
an MCMC method for the problem we consider here. We analyzed the robustness properties of the MLE
These diagnostics require the raw output of the Markov and associated confidence intervals under models of
chain, which is not available from Recombine. Thus population growth and population substructure. We
currently the only method for assessing the accuracy of solely consider the MLE for �/�, as neither � nor � are
the approximated-likelihood surface obtained by Re-

well defined for these models (in contrast �/� is just
combine is by running Recombine a number of inde-

the ratio of the probability of recombination to thependent times on the same data set and directly compar-
probability of mutation). The simulation results areing the approximations of the likelihood surface that
broadly encouraging: They suggest that the MLE per-are produced.
forms satisfactorily and that confidence intervals areAnother potential problem with any computationally
robust to population growth and structure. With theintensive method is the possibility of an undetected bug
exception of data simulated under a model with veryin the computer code. This is particularly important for
strong population structure (more than is consistenta problem like estimating recombination rates, when
with human population genetic data), the confidencelittle is known about the sampling properties of the
intervals for �/� showed no significant evidence forMLE (and hence bugs cannot be detected by comparing
being anticonservative.the output of the program with theoretical expecta-

In considering parameter estimation, for ease of com-tions). One diagnostic check that the authors found
parison with published work, we concentrated on maxi-useful (and that helped to find a bug in an early version
mum-likelihood estimation. However, having obtainedof one of the programs) is to run the program on a
the likelihood surface it would also be straightforwardlarge number of independent data sets, each data set
to adopt Bayesian approaches to estimation. These cansimulated with the same parameter values. If the approx-
also be undertaken directly in MCMC methods, e.g., asimated likelihoods for each data set are multiplied to-
in Wilson and Balding 1998, without explicitly gener-gether, we obtain a “composite” likelihood function. By
ating a likelihood surface.) As noted elsewhere (Tavaréconstruction, this composite likelihood function is the
et al. 1997; Wilson and Balding 1998) there are naturallikelihood of independent identically distributed sets
advantages in Bayesian methods in this context. First,of data, and the usual asymptotic theory will apply. In
they allow other information (for example, existing esti-particular, the likelihood-ratio statistic based on this com-
mates of the effective population size or calibration ofposite likelihood should be approximately chi square
mutation rates by comparisons with other species) to(with the degrees of freedom equal to the number of
be incorporated. Perhaps more importantly, they allowparameters), so that checking its empirical distribution

provides a useful diagnostic tool. a sensible incorporation of uncertainty about relevant
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describe the procedure for simulating a single event in
the ARG.

APPENDIX A: DYNAMIC PROGRAMMING Consider an L locus model, with K alleles at eachCALCULATION OF p(�|H)
locus. As before, let P be the K � K mutation matrix,

Here we describe the dynamic programming tech- and let � and � be, respectively, the mutation and recom-
nique for the finite-sites case, with L loci. A K-allele bination rates across the region of interest.
model is assumed at each locus, with mutation transition Assume that there are currently j branches in the
matrix P and mutation rate �/L. We use a numerical ARG. For i � 1, . . . , j let ai be the proportion of loci
integration scheme similar to that of Stephens and at which branch i is ancestral and bi be the distance
Donnelly (2000). Assume suitable k, tm, and wm have between the extreme ancestral loci of branch i. (If
been chosen (for example, using Gaussian quadrature; branch i has l ancestral loci at positions x1 � x2, · · · �
see Evans 1993), so that for a general function f(·), xl, then ai � l/L and bi � xl � x1.) For a haplotype �

let j� be the number of the j branches in the ARG that
�

∞

0

exp��t� f(t)dt ≈ �
k

m�1

wmf(tm). are of type �. (To have the same type requires the
branch to have the same ancestral loci as � and at each

Assume further that the current sample configuration, ancestral locus to have the same allele as �.) Finally let
H, contains j chromosomes. Finally let �i, i � 1, . . . , L H be the set of haplotypes of the j branches, and let
be a K-vector of the proportions in H of each of the K H � � denote the set of j � 1 haplotypes obtained by
types at locus i, and define Q(t) � exp{� t(P � I)/L }. removing haplotype � from H.

Now p(�|H) is calculated recursively. Let pi(�) denote We simulate the next event in the ARG via a two-stage
the probability that the type of the new chromosome process:
generated under our approximation will be the same

1. Choose branch i with probability proportional to ( j �as � at the first i loci. Further, let pi(�|s, t) denote
1 	 ai� 	 bi�). Denote the type of the chosen branchthe same probability conditional on the ith locus being
to be �.obtained by mutating the ith locus of chromosome s in

2. Choose an event to occur to the chosen branch withH, with the number of mutations being Poisson with
the following probabilities. [Throughout, C is a nor-rate �t. Now, we use the approximation (obtained via
malizing constant, chosen so that the probability ofnumerical integration) that
all possible events sums to one; the probabilities,
p(·|·), are defined in Approximating �(�|H) when � �pi(�) � �

k

m�1
�

j

s�1

wmpi(�|s, tm/j)/j. (A1)
0 and calculated as described in appendix a.]

i. A coalescence with another branch of type �.Let qi � zi�/( j 	 zi�), the probability of a recombina-
This occurs with probability C( j� � 1)/p(�|H � �).tion between the ith and (i 	 1)th loci, and let �i	1 be

ii. A coalescence with a branch of type �. If � is thethe type of � at the (i 	 1)th locus. If the sth chromo-
haplotype produced by coalescing � with �, thensome in H is ancestral at the (i 	 1)th locus, then
this event occurs with probabilitydenoting Hs(i	1) to be its type,

p i	1(�|s, t) � {(1 � qi)pi(�|s, t) 	 qipi(�)}QHs(i	1)�i	1
(t). Cj �� p(�|H � � � �)

p(�|H � �)p(�|H � � � �)�.(A2)

If it is not ancestral then Such an event can occur for any haplotype � that
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shares the same alleles as � at common ancestral If the positions of the loci are xl and xl	1, and
the recombination produces haplotypes � andloci.
�, then this event occurs with probability

iii. A mutation at locus l, mutating allele �l to �l. If �
is the new haplotype produced by this mutation,

C(xl	1 � xl)��p(�|H � �)p(�|H � � 	 �)
p(�|H � �) �.then this event occurs with probability

Such an event can occur for l � 1, . . . , L � 1,CP�l �l��p(�|H � �)
p(�|H � �)�. providing xl and xl	1 lie between (or are) the

extreme ancestral loci. Conditional on such an
Such an event can occur for all loci l that are

event, the position of the recombination
ancestral in � and for �l � 1, . . . , K.

breakpoint is generated uniformly on the inter-
val [xl, xl	1].iv. A recombination between two neighboring loci.


